Overview and Background

1. History of Continuous Improvement
 Lean Six Sigma is a proven business process improvement methodology that builds on the best practices and experiences of earlier approaches. It combines best practices around customer focus, empowered teams, process definition, and data analysis.

2. Six Sigma Principles
 The Six Sigma methodology seeks to reduce and ultimately eliminate variation within a process. It applies a five-phase project management approach and uses the standard deviation (sigma) as the controlling attribute for the process.

3. Lean Principles
 The Lean methodology seeks to reduce and ultimately eliminate waste within a process. It applies a five part approach and uses flow control as the optimizing principle for the process.

4. Lean and Six Sigma
 Lean and Six Sigma are easily blended. They have many similarities in methodology – process focused, team based, and project management. The differences, analyzing quality data versus flow data, are complementary and together provide a balanced view of the process.

Certification

5. IASSC Testing Approach
 The International Association of Six Sigma Certification is a recognized international body that certifies Lean Six Sigma Yellow, Green, and Black Belts. The online application process is straightforward.

6. IASSC Black Belt
 This lesson provides a high-level review of the topics covered on the IASSC Black Belt examination.
Roles and Responsibilities
The Lean Six Sigma methodology has defined roles of Yellow Belt, Green Belt, Black Belt and Master Black Belt with respect to project leadership and execution.

Project Phases
The Lean Six Sigma methodology relies on a five-phased project management methodology. The phases Define, Measure, Analyze, Improve, and Control provide structure to the project.

Project Deliverables
The Lean Six Sigma methodology has defined a set of deliverables that should be prepared during each of the five project phases. These deliverables will guide a project team through the improvement process in an orderly and logical manner.

Project Charter & Business Case
The Lean Six Sigma methodology encourages the use of a project charter and the creation of a business case to set boundaries on the project and to manage stakeholder expectations.

Project Reviews
The Lean Six Sigma methodology involves stakeholders through a set of project reviews. Each type of review has a goal and purpose.

Coaching Stakeholders
The Lean Six Sigma Black Belt is often the primary interface between Lean Six Sigma teams and senior management stakeholders. Many of these stakeholders do not understand the Lean Six Sigma methodology. The Lean Six Sigma Black Belt will need to manage the stakeholder interactions and coach the stakeholders concerning their role on a Lean Six Sigma project. This lesson will discuss the roles of stakeholders and stakeholder interactions.

Coaching with Questions
A Lean Six Sigma Black Belt will often need to coach Green Belts, Yellow Belts, and other team members. Through the effective use of questions, the Black Belt can both gain information for themselves and provide training in quality thinking and the improvement methodology. Different questioning techniques are appropriate for different team circumstances. This lesson will review the techniques and when to apply them.

Coaching with Feedback
Feedback, both positive and negative, can be a very effective tool for Lean Six Sigma Black Belts to use when coaching teams. However, feedback used inappropriately can damage the team and undermine their ability to achieve a project success. This lesson will discuss the use of feedback and provide pointers for how to deliver it.

Lean Six Sigma Fundamentals

Critical To Quality (CTQ)
Lean Six Sigma relies on the use of Critical to Quality (CTQ) characteristics. These are the attributes that will be used to measure success or failure of the project.

Variation
Variation leads to uncertainty in process performance which requires extra management and buffers elsewhere in the business environment. One of the primary goals of a Lean Six Sigma project is to identify sources of variation in process performance and eliminating or reducing those sources of variation.
Elements of Waste
Waste can take many forms including high costs, delayed timing, rework, redundant work and idle processes. One of the primary goals of a Lean Six Sigma project is to identify areas of process waste and eliminating or reducing those sources of waste.

Y=F(x)
Lean Six Sigma projects strive to characterize project performance through the creation of a process formula. This formula allows the team to predict and optimize process performance.

Process Management
Lean Six Sigma analysis considers process level performance. For this reason it is necessary to understand the complete process – both the process steps and the process flow.

Lean Six Sigma Metrics
Lean Six Sigma has introduces some new metrics into the common business vocabulary including process sigma, DPMO, cycle time and value-added effort.

Define Stage

Project Selection
One of the decisions that must be made during the Define Phase is the selection of the project and its boundaries. Lean Six Sigma projects are often part of a portfolio of projects that may be selected and approved as a bundle.

Pareto Principle
The Pareto principle is a widely accepted technique for prioritizing effort and activity. The Pareto principle will typically be applied in every phase of a Lean Six Sigma project, including this initial Define phase where it is used to prioritize the areas of focus for the project.

Voice of the Customer
Lean Six Sigma methodology is grounded on the voice of the customer. The Define phase collects and assesses information concerning the customer perspective and uses it to focus the project activities.

Cost of Poor Quality (COPQ)
Lean Six Sigma is a problem solving methodology. As such, one of the ways of quantifying the opportunity for improvement is through an aggregation of the costs associated with that problem. This is known as the Cost of Poor Quality and provides insight on the project benefit.

Process Mapping
In order to improve process performance, the Lean Six Sigma project team must understand the current state of the process. Process Mapping is the technique for describing the process and providing a framework for collecting process data.

Lean Value
Lean Six Sigma projects apply the Lean principle of value-added effort in the definition of the project and when identifying the opportunity for improvement.

Define Stage Deliverables
A Lean Six Sigma Black Belt will often chair the Stage Gate Review meetings for Lean Six Sigma Projects. In those meetings, the Black Belt needs to ensure the work of the phase was done and the tools were used effectively. This lesson reviews the normal deliverables due at the Define Stage Gate review. It also includes hints and tips for identifying problems to be avoided during that phase.
Measure Stage

28 Problem Statement
The problem statement clarifies the goals and activities of the Lean Six Sigma project by specifying the issue to be resolved. It's an excellent communication tool for the team to use with stakeholders.

29 Problem Definition Tools
There are numerous tools to assist the Lean Six Sigma team in the creation of the problem statement. Different tools work better in different applications, but all of them help the Lean Six Sigma team focus on the root cause problems and not chase symptoms.

30 Data Types
There are two types of data: variable and attribute. Both types are useful in measuring process performance by analyzing process problems, but they need to be treated differently.

31 Measurement Systems
The collection of data assumes that there is a measurement system used to measure and record the data. It is important to understand the characteristics of the measurement systems so that the Lean Six Sigma team will know how far they can trust the data.

32 Measurement Errors
All measurement systems introduce an element of error into the measured value. There are techniques for determining the magnitude of that error and thereby determining if a different measurement system needs to be used.

33 X/Y Matrix
The X/Y matrix is a tool that maps the Voice of Customer needs and concerns onto the process steps and inputs. This tool can take on several different formats, but any of them will provide the Lean Six Sigma team with insight as to the contributing factors of customer value.

34 FMEA Principles
The Failure Mode Effects Analysis (FMEA) tool highlights areas of high product design or process execution risk. This tool provides insight into possible causes for observed failures.

35 Value Stream Mapping
Value stream mapping is the Lean process mapping technique. With this map, the Lean Six Sigma team will know which steps are directly contributing to delivering the customer value aspects of the process. It also provides the foundation for deeper flow analysis.

36 Value Stream Map Data Box
The Value Stream Map Data Box is the technique used to capture and analyze data at each step of the Value Stream Map.

37 As-is Metrics
The As-is metrics are the measured current state of the process or problem. It is not the best-case, the worst-case, or the “as-designed” case; it is the current average performance of the process or problem.

38 Data Collection
The purpose of the Measure phase of a Lean Six Sigma project is to collect complete, accurate and meaningful data. There is a simple data collection approach that can be used by the team to ensure this is accomplished.
A Lean Six Sigma Black Belt will often chair the stage gate review meetings for Lean Six Sigma projects. In those meetings, the Black Belt needs to ensure the work of the phase was done and the tools were used effectively. This lesson reviews the normal deliverables due at the Measure stage gate review. It also includes hints and tips for identifying problems to be avoided during that phase.

Descriptive Statistics

Lean Six Sigma methodology relies heavily on statistical analysis of problems and solutions. A single data point is not sufficient, rather a collection of data is needed for analysis. This collection will have some natural variability within it and descriptive statistics explain the boundaries of that variability.

Normal Distribution

The normal distribution charts the type of variability in a process parameter that is being measured when the only cause for variation is natural random physical effects. It's the desired distribution when improving a process since it delivers a predictable level of process performance.

Basic Graphical Analysis

When considering a distribution of data values for a process attribute, a graph of that data can be very insightful. The picture is often easier for team members to understand than a statistical description of the data distribution. This picture will often point the team to the process problem.

Graphing of Complex Data

When the process or problem data set has multiple characteristics, there are a set of graphing techniques that can show these effects. Although more complex than the basic techniques, they are easy to use and create a picture of the data set.

Process Stability

A stable process is one in which only random variation exists. A Lean Six Sigma team must eliminate sources of instability before attempting to improve the normal process performance.

Run Chart

The run chart is the most common chart of process data. It is easy to create and maintain and gives the process operators immediate insight when a process becomes unstable.

Process Capability Principles

Process capability is the statistical analysis conducted to determine if a process that is performing with only the normal process variation can be expected to meet the customer expectations at all time.

Z Scores

Z scores are a method of normalizing data from different data sets for comparison or prediction. Z scores normalize the data using the process standard deviation. The Z transformation table will convert Z scores into percentages.

Central Limit Theorem

The Central Limit Theorem is a principle that is used to transform non-normal raw data into a data set that is normal.

Analyze Stage
Problem Analysis
Problem analysis is the methodical approach to analyzing a problem and finding the root cause or causes. It normally includes creating and testing an hypothesis or an experiment to determine the cause.

Statistical Analysis
Statistical tests are often used to aid the problem analysis. The statistical analysis of a small sample of data can point to root causes of problems in the full data set.

Visual Analysis
Graphical analysis techniques are particularly good for illustrating significance, similarities or differences, and correlation between parameters within a data set.

Lean Flow Analysis
The Lean process analysis will reveal flow process flow problems. Lean techniques can be used to analyze flow at both a total process (macro) level or at a process step (micro) level.

Lean Quality Analysis
The process analysis of the value stream map will reveal quality issues that are occurring within process steps. These are identified by analyzing step data and process flow data.

Lean Resource Analysis
Analysis of the Lean value stream map and the related data can reveal wasted resources; both people and product or service items that are being processed.

Analyze Stage Deliverables
A Lean Six Sigma Black Belt will often chair the stage gate review meetings for Lean Six Sigma projects. In those meetings, the Black Belt needs to ensure the work of the phase was done and the tools were used effectively. This lesson reviews the normal deliverables due at the Analyze stage gate review. It also includes hints and tips for identifying problems to be avoided during that phase.

Improve Stage

Problem Improvement
Problem solving often requires an interim solution while a permanent solution is being developed and validated. When multiple possible solutions are available, the team should recommend a solution approach.

Solving Special Cause & Common Cause Problems
Special cause problems should be resolved first in order to achieve process stability. Then common cause problems are addressed to reduce process variation.

Intro to Design of Experiments
Design of Experiments (DOE) is an experimental technique for identifying the primary factors within a system that determine system performance. DOE is particularly useful in complex systems where there are interactions between factors and relationships are not obvious.

Lean Improvement: Flow
Lean process improvements are designed using a “should be” value stream map that shows the new flow. The data box on this map estimates the impact of the elimination and redesign of process steps and the removal of system constraints.
Lean Improvement: Pull
The benefits of Lean improvements rely on changing the process schedule management approach in addition to process redesign. Pull scheduling and visual management are used to maintain smooth flow in the process.

Solving Problems with Poka Yoke
Many problems can be solved using mistake proofing approaches that are embodied in the five Poka Yoke principles that both detect and prevent errors from occurring.

Solving Problems with Five S Principles
The Five S principles can be used to organize the workplace and support and sustain the problem solutions by reducing the likelihood of confusion and rapidly exposing process degradation.

Innovation and Concept Selection
Lean Six Sigma projects normally identify incremental improvements for products and processes. However, sometimes the improvement needed requires innovation beyond the current product and process. This lesson discusses several tools and introduces one of the most popular, the Pugh concept generation matrix, as methods to be used when an innovative solution is required.

Improve Stage Deliverables
A Lean Six Sigma Black Belt will often chair the stage gate review meetings for Lean Six Sigma projects. In those meetings, the Black Belt needs to ensure the work of the phase was done and the tools were used effectively. This lesson reviews the normal deliverables due at the Improve stage gate review. It also includes hints and tips for identifying problems to be avoided during that phase.

Control Stage

Cost - Benefit Analysis
The proof that the Lean Six Sigma team’s solution will be found in the measured change in the process performance. The benefit analysis quantifies this change and translates it into business terms if necessary.

Control Plan
It is hard to make a permanent change to a process. People and systems have a tendency to drift back to the old way of doing things. The control plan provides guidance on how to maintain control of the new process and the measurements that will show the process deviating from the new approach.

Response Plan
A key element of the control plan is the response plan. It tells the process operators what to do when the process begins to deviate from the parameters laid out in the control plan.

Prevention as Control
One of the best techniques for controlling a process to perform in a particular manner is to prevent it from performing in any other manner. There are methodologies that can be used to create prevention of process problems, Poky Yoke and Five S Disciplines.

Lean Process Control
Lean process control focuses on maintaining the process flow of the Should-Be process. It relies on principles of visual control, empowerment, and continuous improvement.

Statistical Process Control
Statistical process control uses real-time process data to determine whether a process is maintaining the improvements that were implemented. Control charts will indicate special cause and common cause variation, empowering process operators to maintain process quality.
Implementing the Solution
Implementing the technical changes of the solution are often easy, the difficulty is usually the emotional and cultural resistance to change. The implementation should be planned and managed as a project. The project should include the actions taken to change the business systems and structures in addition to the specific problem solution.

Control Stage Deliverables
A Lean Six Sigma Black Belt will often chair the stage gate review meetings for Lean Six Sigma projects. In those meetings, the Black Belt needs to ensure the work of the phase was done and the tools were used effectively. This lesson reviews the normal deliverables due at the Control stage gate review. It also includes hints and tips for identifying problems to be avoided during that phase.